H3F3A K27M mutations in thalamic gliomas from young adult patients.
نویسندگان
چکیده
INTRODUCTION Mutations in H3F3A, which encodes histone H3.3, commonly occur in pediatric glioblastoma. Additionally, H3F3A K27M substitutions occur in gliomas that arise at midline locations (eg, pons, thalamus, spine); moreover, this substitution occurs mainly in tumors in children and adolescents. Here, we sought to determine the association between H3F3A mutations and adult thalamic glioma. METHODS Genomic H3F3A was sequenced from 20 separate thalamic gliomas. Additionally, for 14 of the 20 gliomas, 639 genes--including cancer-related genes and chromatin-modifier genes--were sequenced, and the Infinium HumanMethylation450K BeadChip was used to examine DNA methylation across the genome. RESULTS Of the 20 tumors, 18 were high-grade thalamic gliomas, and of these 18, 11 were from patients under 50 years of age (median age, 38 y; range, 17-46), and 7 were from patients over 50 years of age. The H3F3A K27M mutation was present in 10 of the 11 (91%) younger patients and absent from all 7 older patients. Additionally, H3F3A K27M was not detected in the 2 diffuse astrocytomas. Further sequencing revealed recurrent mutations in TP53, ATRX, NF1, and EGFR. Gliomas with H3F3A K27M from pediatric or young adult patients had similar, characteristic DNA methylation profiles. In contrast, thalamic gliomas with wild-type H3F3A had DNA methylation profiles similar to those of hemispheric glioblastomas. CONCLUSION We found that high-grade thalamic gliomas from young adults, like those from children and adolescents, frequently had H3F3A K27M.
منابع مشابه
Biomarker-based prognostic stratification of young adult glioblastoma
While the predominant elderly and the pediatric glioblastomas have been extensively investigated, young adult glioblastomas were understudied. In this study, we sought to stratify young adult glioblastomas by BRAF, H3F3A and IDH1 mutations and examine the clinical relevance of the biomarkers. In 107 glioblastomas aged from 17 to 35 years, mutually exclusive BRAF-V600E (15%), H3F3A-K27M (15.9%),...
متن کاملCo-occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma.
Ganglioglioma (GG) is a grade I tumor characterized by alterations in the MAPK pathway, including BRAF V600E mutation. Recently, diffuse midline glioma with an H3 K27M mutation was added to the WHO 2016 classification as a new grade IV entity. As co-occurrence of H3 K27M and BRAF V600E mutations has been reported in midline tumors and anaplastic GG, we searched for BRAF V600E and H3 K27M mutati...
متن کاملTargeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma
Paediatric brain tumours arising in the thalamus present significant diagnostic and therapeutic challenges to physicians due to their sensitive midline location. As such, genetic analysis for biomarkers to aid in the diagnosis, prognosis and treatment of these tumours is needed. Here, we identified 64 thalamic gliomas with clinical follow-up and characterized targeted genomic alterations using ...
متن کاملEvaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas.
H3F3A mutations are seen in ∼30% of pediatric glioblastoma (GBMs) and involve either the lysine residue at position 27 (K27M) or glycine at position 34 (G34R/V). Sixteen genes encode histone H3, each variant differing in only a few amino acids. Therefore, how mutations in a single H3 gene contribute to carcinogenesis is unknown. H3F3A K27M mutations are predicted to alter methylation of H3K27. ...
متن کاملATRX immunostaining predicts IDH and H3F3A status in gliomas
Gliomas are the most frequent intraaxial CNS neoplasms with a heterogeneous molecular background. Recent studies on diffuse gliomas have shown frequent alterations in the genes involved in chromatin remodelling pathways such as α-thalassemia/mental-retardation-syndrome-X-linked gene (ATRX). Yet, the reliability of ATRX in predicting isocitrate dehydrogenase (IDH) and H3 histone, family 3A (H3F3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuro-oncology
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2014